ref: c07799d19f6b275492500c007b14407b2d98b5cc
dir: /appl/lib/strokes/strokes.b/
implement Strokes; # # this Limbo code is derived from C code that had the following # copyright notice, which i reproduce as requested # # li_recognizer.c # # Copyright 2000 Compaq Computer Corporation. # Copying or modifying this code for any purpose is permitted, # provided that this copyright notice is preserved in its entirety # in all copies or modifications. # COMPAQ COMPUTER CORPORATION MAKES NO WARRANTIES, EXPRESSED OR # IMPLIED, AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR # # # Adapted from cmu_recognizer.c by Jay Kistler. # # Where is the CMU copyright???? Gotta track it down - Jim Gettys # # Credit to Dean Rubine, Jim Kempf, and Ari Rapkin. # # # the copyright notice really did end in the middle of the sentence # # # Limbo version for Inferno by [email protected], Vita Nuova, September 2001 # # # the code is reasonably close to the algorithms described in # ``On-line Handwritten Alphanumeric Character Recognition Using Dominant Stroke in Strokes'', # Xiaolin Li and Dit-Yan Yueng, Department of Computer Science, # Hong Kong University of Science and Technology, Hong Kong (23 August 1996) # include "sys.m"; sys: Sys; include "strokes.m"; MAXINT: con 16r7FFFFFFF; # Dynamic programming parameters DP_BAND: con 3; SIM_THLD: con 60; # x100 #DIST_THLD: con 3200; # x100 DIST_THLD: con 3300; # x100 # Low-pass filter parameters -- empirically derived LP_FILTER_WIDTH: con 6; LP_FILTER_ITERS: con 8; LP_FILTER_THLD: con 250; # x100 LP_FILTER_MIN: con 5; # Pseudo-extrema parameters -- empirically derived PE_AL_THLD: con 1500; # x100 PE_ATCR_THLD: con 135; # x100 # Pre-processing and canonicalization parameters CANONICAL_X: con 108; CANONICAL_Y: con 128; DIST_SQ_THRESHOLD: con 3*3; # direction-code table; indexed by dx, dy dctbl := array[] of {array[] of {1, 0, 7}, array[] of {2, MAXINT, 6}, array[] of {3, 4, 5}}; # low-pass filter weights lpfwts := array[2 * LP_FILTER_WIDTH + 1] of int; lpfconst := -1; lidebug: con 0; stderr: ref Sys->FD; # x := 0.04 * (i * i); # wtvals[i] = floor(100.0 * exp(x)); wtvals := array[] of {100, 104, 117, 143, 189, 271, 422}; init() { sys = load Sys Sys->PATH; if(lidebug) stderr = sys->fildes(2); for(i := LP_FILTER_WIDTH; i >= 0; i--){ wt := wtvals[i]; lpfwts[LP_FILTER_WIDTH - i] = wt; lpfwts[LP_FILTER_WIDTH + i] = wt; } lpfconst = 0; for(i = 0; i < (2 * LP_FILTER_WIDTH + 1); i++) lpfconst += lpfwts[i]; } Stroke.new(n: int): ref Stroke { return ref Stroke(n, array[n] of Penpoint, 0, 0); } Stroke.trim(ps: self ref Stroke, n: int) { ps.npts = n; ps.pts = ps.pts[0:n]; } Stroke.copy(ps: self ref Stroke): ref Stroke { n := ps.npts; a := array[n] of Penpoint; a[0:] = ps.pts[0:n]; return ref Stroke(n, a, ps.xrange, ps.yrange); } # # return the bounding box of a set of points # (note: unlike Draw->Rectangle, the region is closed) # Stroke.bbox(ps: self ref Stroke): (int, int, int, int) { minx := maxx := ps.pts[0].x; miny := maxy := ps.pts[0].y; for(i := 1; i < ps.npts; i++){ pt := ps.pts[i]; if(pt.x < minx) minx = pt.x; if(pt.x > maxx) maxx = pt.x; if(pt.y < miny) miny = pt.y; if(pt.y > maxy) maxy = pt.y; } return (minx, miny, maxx, maxy); # warning: closed interval } Stroke.center(ps: self ref Stroke) { (minx, miny, maxx, maxy) := ps.bbox(); ps.xrange = maxx-minx; ps.yrange = maxy-miny; avgxoff := -((CANONICAL_X - ps.xrange + 1) / 2); avgyoff := -((CANONICAL_Y - ps.yrange + 1) / 2); ps.translate(avgxoff, avgyoff, 100, 100); } Stroke.scaleup(ps: self ref Stroke): int { (minx, miny, maxx, maxy) := ps.bbox(); xrange := maxx - minx; yrange := maxy - miny; scale: int; if(((100 * xrange + CANONICAL_X / 2) / CANONICAL_X) > ((100 * yrange + CANONICAL_Y / 2) / CANONICAL_Y)) scale = (100 * CANONICAL_X + xrange / 2) / xrange; else scale = (100 * CANONICAL_Y + yrange / 2) / yrange; ps.translate(minx, miny, scale, scale); return scale; } # scalex and scaley are x 100. # Note that this does NOT update points.xrange and points.yrange! Stroke.translate(ps: self ref Stroke, minx: int, miny: int, scalex: int, scaley: int) { for(i := 0; i < ps.npts; i++){ ps.pts[i].x = ((ps.pts[i].x - minx) * scalex + 50) / 100; ps.pts[i].y = ((ps.pts[i].y - miny) * scaley + 50) / 100; } } TAP_PATHLEN: con 10*100; # x100 Classifier.match(rec: self ref Classifier, stroke: ref Stroke): (int, string) { if(stroke.npts < 1) return (-1, nil); # Check for tap. # First thing is to filter out ``close points.'' stroke = stroke.filter(); # Unfortunately, we don't have the actual time that each point # was recorded (i.e., dt is invalid). Hence, we have to use a # heuristic based on total distance and the number of points. if(stroke.npts == 1 || stroke.length() < TAP_PATHLEN) return (-1, "tap"); preprocess_stroke(stroke); # Compute its dominant points. dompts := stroke.interpolate().dominant(); best_dist := MAXDIST; best_i := -1; best_name: string; # Score input stroke against every class in classifier. for(i := 0; i < len rec.cnames; i++){ name := rec.cnames[i]; (sim, dist) := score_stroke(dompts, rec.dompts[i]); if(dist < MAXDIST) sys->fprint(stderr, " (%s, %d, %d)", name, sim, dist); if(dist < DIST_THLD){ if(lidebug) sys->fprint(stderr, " (%s, %d, %d)", name, sim, dist); # Is it the best so far? if(dist < best_dist){ best_dist = dist; best_i = i; best_name = name; } } } if(lidebug) sys->fprint(stderr, "\n"); return (best_i, best_name); } preprocess_stroke(s: ref Stroke) { # Filter out points that are too close. # We did this earlier, when we checked for a tap. # s = s.filter(); # assert(s.npts > 0); # Scale up to avoid conversion errors. s.scaleup(); # Center the stroke. s.center(); if(lidebug){ (minx, miny, maxx, maxy) := s.bbox(); sys->fprint(stderr, "After pre-processing: [ %d %d %d %d]\n", minx, miny, maxx, maxy); printpoints(stderr, s, "\n"); } } # # return the dominant points of Stroke s, assuming s has been through interpolation # Stroke.dominant(s: self ref Stroke): ref Stroke { regions := s.regions(); # Dominant points are: start, end, extrema of non plain regions, and midpoints of the preceding. nonplain := 0; for(r := regions; r != nil; r = r.next) if(r.rtype != Rplain) nonplain++; dom := Stroke.new(1 + 2*nonplain + 2); # Pick out dominant points. # start point dp := 0; previx := 0; dom.pts[dp++] = s.pts[previx]; currix: int; cas := s.contourangles(regions); for(r = regions; r != nil; r = r.next) if(r.rtype != Rplain){ max_v := 0; min_v := MAXINT; max_ix := -1; min_ix := -1; for(i := r.start; i <= r.end; i++){ v := cas[i]; if(v > max_v){ max_v = v; max_ix = i; } if(v < min_v){ min_v = v; min_ix = i; } if(lidebug > 1) sys->fprint(stderr, " %d\n", v); } if(r.rtype == Rconvex) currix = max_ix; else currix = min_ix; dom.pts[dp++] = s.pts[(previx+currix)/2]; # midpoint dom.pts[dp++] = s.pts[currix]; # extreme previx = currix; } # last midpoint, and end point lastp := s.npts - 1; dom.pts[dp++] = s.pts[(previx+lastp)/2]; dom.pts[dp++] = s.pts[lastp]; dom.trim(dp); # Compute chain-code. compute_chain_code(dom); return dom; } Stroke.contourangles(s: self ref Stroke, regions: ref Region): array of int { V := array[s.npts] of int; V[0] = 18000; for(r := regions; r != nil; r = r.next){ for(i := r.start; i <= r.end; i++){ if(r.rtype == Rplain){ V[i] = 18000; }else{ # For now, simply choose the mid-point. ismidpt := i == (r.start + r.end)/2; if(ismidpt ^ (r.rtype!=Rconvex)) V[i] = 18000; else V[i] = 0; } } } V[s.npts - 1] = 18000; return V; } Stroke.interpolate(s: self ref Stroke): ref Stroke { # Compute an upper-bound on the number of interpolated points maxpts := s.npts; for(i := 0; i < s.npts - 1; i++){ a := s.pts[i]; b := s.pts[i+1]; maxpts += abs(a.x - b.x) + abs(a.y - b.y); } # Allocate an array of the maximum size newpts := Stroke.new(maxpts); # Interpolate each of the segments. j := 0; for(i = 0; i < s.npts - 1; i++){ j = bresline(s.pts[i], s.pts[i+1], newpts, j); j--; # end point gets recorded as start point of next segment! } # Add-in last point and trim newpts.pts[j++] = s.pts[s.npts - 1]; newpts.trim(j); if(lidebug){ sys->fprint(stderr, "After interpolation:\n"); printpoints(stderr, newpts, "\n"); } # Compute the chain code for P (the list of points). compute_unit_chain_code(newpts); return newpts; } # This implementation is due to an anonymous page on the net bresline(startpt: Penpoint, endpt: Penpoint, newpts: ref Stroke, j: int): int { x0 := startpt.x; x1 := endpt.x; y0 := startpt.y; y1 := endpt.y; stepx := 1; dx := x1-x0; if(dx < 0){ dx = -dx; stepx = -1; } dx <<= 1; stepy := 1; dy := y1-y0; if(dy < 0){ dy = -dy; stepy = -1; } dy <<= 1; newpts.pts[j++] = (x0, y0, 0); if(dx >= dy){ e := dy - (dx>>1); while(x0 != x1){ if(e >= 0){ y0 += stepy; e -= dx; } x0 += stepx; e += dy; newpts.pts[j++] = (x0, y0, 0); } }else{ e := dx - (dy>>1); while(y0 != y1){ if(e >= 0){ x0 += stepx; e -= dy; } y0 += stepy; e += dx; newpts.pts[j++] = (x0, y0, 0); } } return j; } compute_chain_code(pts: ref Stroke) { for(i := 0; i < pts.npts - 1; i++){ dx := pts.pts[i+1].x - pts.pts[i].x; dy := pts.pts[i+1].y - pts.pts[i].y; pts.pts[i].chaincode = (12 - quadr(likeatan(dy, dx))) % 8; } } compute_unit_chain_code(pts: ref Stroke) { for(i := 0; i < pts.npts - 1; i++){ dx := pts.pts[i+1].x - pts.pts[i].x; dy := pts.pts[i+1].y - pts.pts[i].y; pts.pts[i].chaincode = dctbl[dx+1][dy+1]; } } Stroke.regions(pts: self ref Stroke): ref Region { # Allocate a 2 x pts.npts array for use in computing the (filtered) Angle set, A_n. R := array[] of {0 to LP_FILTER_ITERS+1 => array[pts.npts] of int}; curr := R[0]; # Compute the Angle set, A, in the first element of array R. # Values in R are in degrees, x 100. curr[0] = 18000; # a_0 for(i := 1; i < pts.npts - 1; i++){ d_i := pts.pts[i].chaincode; d_iminusone := pts.pts[i-1].chaincode; if(d_iminusone < d_i) d_iminusone += 8; a_i := (d_iminusone - d_i) % 8; # convert to degrees, x 100 curr[i] = ((12 - a_i) % 8) * 45 * 100; } curr[pts.npts-1] = 18000; # a_L-1 # Perform a number of filtering iterations. next := R[1]; for(j := 0; j < LP_FILTER_ITERS; ){ for(i = 0; i < pts.npts; i++){ next[i] = 0; for(k := i - LP_FILTER_WIDTH; k <= i + LP_FILTER_WIDTH; k++){ oldval: int; if(k < 0 || k >= pts.npts) oldval = 18000; else oldval = curr[k]; next[i] += oldval * lpfwts[k - (i - LP_FILTER_WIDTH)]; # overflow? } next[i] /= lpfconst; } j++; curr = R[j]; next = R[j+1]; } # Do final thresholding around PI. # curr and next are set-up correctly at end of previous loop! for(i = 0; i < pts.npts; i++) if(abs(curr[i] - 18000) < LP_FILTER_THLD) next[i] = 18000; else next[i] = curr[i]; curr = next; # Debugging. if(lidebug > 1){ for(i = 0; i < pts.npts; i++){ p := pts.pts[i]; sys->fprint(stderr, "%3d: (%d %d) %ud ", i, p.x, p.y, p.chaincode); for(j = 0; j < 2 + LP_FILTER_ITERS; j++) sys->fprint(stderr, "%d ", R[j][i]); sys->fprint(stderr, "\n"); } } # Do the region segmentation. r := regions := ref Region(regiontype(curr[0]), 0, 0, nil); for(i = 1; i < pts.npts; i++){ t := regiontype(curr[i]); if(t != r.rtype){ r.end = i-1; if(lidebug > 1) sys->fprint(stderr, " (%d, %d) %d\n", r.start, r.end, r.rtype); r.next = ref Region(t, i, 0, nil); r = r.next; } } r.end = i-1; if(lidebug > 1) sys->fprint(stderr, " (%d, %d), %d\n", r.start, r.end, r.rtype); # Filter out convex/concave regions that are too short. for(r = regions; r != nil; r = r.next) if(r.rtype == Rplain){ while((nr := r.next) != nil && (nr.end - nr.start) < LP_FILTER_MIN){ # nr must not be plain, and it must be followed by a plain # assert(nr.rtype != Rplain); # assert(nr.next != nil && (nr.next).rtype == Rplain); if(nr.next == nil){ sys->fprint(stderr, "recog: nr.next==nil\n"); # can't happen break; } r.next = nr.next.next; r.end = nr.next.end; } } # Add-in pseudo-extremes. for(r = regions; r != nil; r = r.next) if(r.rtype == Rplain){ arclen := pts.pathlen(r.start, r.end); dx := pts.pts[r.end].x - pts.pts[r.start].x; dy := pts.pts[r.end].y - pts.pts[r.start].y; chordlen := sqrt(100*100 * (dx*dx + dy*dy)); atcr := 0; if(chordlen) atcr = (100*arclen + chordlen/2) / chordlen; if(lidebug) sys->fprint(stderr, "%d, %d, %d\n", arclen, chordlen, atcr); # Split region if necessary. if(arclen >= PE_AL_THLD && atcr >= PE_ATCR_THLD){ mid := (r.start + r.end)/2; end := r.end; r.end = mid - 1; r = r.next = ref Region(Rpseudo, mid, mid, ref Region(Rplain, mid+1, end, r.next)); } } return regions; } regiontype(val: int): int { if(val == 18000) return Rplain; if(val < 18000) return Rconcave; return Rconvex; } # # return the similarity of two strokes and, # if similar, the distance between them; # if dissimilar, the distance is MAXDIST) # score_stroke(a: ref Stroke, b: ref Stroke): (int, int) { sim := compute_similarity(a, b); if(sim < SIM_THLD) return (sim, MAXDIST); return (sim, compute_distance(a, b)); } compute_similarity(A: ref Stroke, B: ref Stroke): int { # A is the longer sequence, length N. # B is the shorter sequence, length M. if(A.npts < B.npts){ t := A; A = B; B = t; } N := A.npts; M := B.npts; # Allocate and initialize the Gain matrix, G. # The size of G is M x (N + 1). # Note that row 0 is unused. # Similarities are x 10. G := array[M] of array of int; for(i := 1; i < M; i++){ G[i] = array[N+1] of int; bcode := B.pts[i-1].chaincode; G[i][0] = 0; # source column for(j := 1; j < N; j++){ diff := abs(bcode - A.pts[j-1].chaincode); if(diff > 4) diff = 8 - diff; # symmetry v := 0; if(diff == 0) v = 10; else if(diff == 1) v = 6; G[i][j] = v; } G[i][N] = 0; # sink column } # Do the DP algorithm. # Proceed in column order, from highest column to the lowest. # Within each column, proceed from the highest row to the lowest. # Skip the highest column. for(j := N - 1; j >= 0; j--) for(i = M - 1; i > 0; i--){ max := G[i][j + 1]; if(i < M-1){ t := G[i + 1][j + 1]; if(t > max) max = t; } G[i][j] += max; } return (10*G[1][0] + (N-1)/2) / (N-1); } compute_distance(A: ref Stroke, B: ref Stroke): int { # A is the longer sequence, length N. # B is the shorter sequence, length M. if(A.npts < B.npts){ t := A; A = B; B = t; } N := A.npts; M := B.npts; # Construct the helper vectors, BE and TE, which say for each column # what are the ``bottom'' and ``top'' rows of interest. BE := array[N+1] of int; TE := array[N+1] of int; for(j := 1; j <= N; j++){ bot := j + (M - DP_BAND); if(bot > M) bot = M; BE[j] = bot; top := j - (N - DP_BAND); if(top < 1) top = 1; TE[j] = top; } # Allocate and initialize the Cost matrix, C. # The size of C is (M + 1) x (N + 1). # Note that row and column 0 are unused. # Costs are x 100. C := array[M+1] of array of int; for(i := 1; i <= M; i++){ C[i] = array[N+1] of int; bx := B.pts[i-1].x; by := B.pts[i-1].y; for(j = 1; j <= N; j++){ ax := A.pts[j-1].x; ay := A.pts[j-1].y; dx := bx - ax; dy := by - ay; dist := sqrt(10000 * (dx * dx + dy * dy)); C[i][j] = dist; } } # Do the DP algorithm. # Proceed in column order, from highest column to the lowest. # Within each column, proceed from the highest row to the lowest. for(j = N; j > 0; j--) for(i = M; i > 0; i--){ min := MAXDIST; if(i > BE[j] || i < TE[j] || (j == N && i == M)) continue; if(j < N){ if(i >= TE[j+1]){ tmp := C[i][j+1]; if(tmp < min) min = tmp; } if(i < M){ tmp := C[i+1][j+1]; if(tmp < min) min = tmp; } } if(i < BE[j]){ tmp := C[i+1][j]; if(tmp < min) min = tmp; } C[i][j] += min; } return (C[1][1] + N / 2) / N; # dist } # Result is x 100. Stroke.length(s: self ref Stroke): int { return s.pathlen(0, s.npts-1); } # Result is x 100. Stroke.pathlen(s: self ref Stroke, first: int, last: int): int { l := 0; for(i := first + 1; i <= last; i++){ dx := s.pts[i].x - s.pts[i-1].x; dy := s.pts[i].y - s.pts[i-1].y; l += sqrt(100*100 * (dx*dx + dy*dy)); } return l; } # Note that this does NOT update points.xrange and points.yrange! Stroke.filter(s: self ref Stroke): ref Stroke { pts := array[s.npts] of Penpoint; pts[0] = s.pts[0]; npts := 1; for(i := 1; i < s.npts; i++){ j := npts - 1; dx := s.pts[i].x - pts[j].x; dy := s.pts[i].y - pts[j].y; magsq := dx * dx + dy * dy; if(magsq >= DIST_SQ_THRESHOLD){ pts[npts] = s.pts[i]; npts++; } } return ref Stroke(npts, pts[0:npts], 0, 0); } abs(a: int): int { if(a < 0) return -a; return a; } # Code from Joseph Hall ([email protected]). sqrt(n: int): int { nn := n; k0 := 2; for(i := n; i > 0; i >>= 2) k0 <<= 1; nn <<= 2; k1: int; for(;;){ k1 = (nn / k0 + k0) >> 1; if(((k0 ^ k1) & ~1) == 0) break; k0 = k1; } return (k1 + 1) >> 1; } # Helper routines from Mark Hayter. likeatan(tantop: int, tanbot: int): int { # Use tan(theta)=top/bot -. order for t # t in range 0..16r40000 if(tantop == 0 && tantop == 0) return 0; t := (tantop << 16) / (abs(tantop) + abs(tanbot)); if(tanbot < 0) t = 16r20000 - t; else if(tantop < 0) t = 16r40000 + t; return t; } quadr(t: int): int { return (8 - (((t + 16r4000) >> 15) & 7)) & 7; } printpoints(fd: ref Sys->FD, pts: ref Stroke, sep: string) { for(j := 0; j < pts.npts; j++){ p := pts.pts[j]; sys->fprint(fd, " (%d %d) %ud%s", p.x, p.y, pts.pts[j].chaincode, sep); } }