ref: 841ed58cdd9486cb25f20acb3519f2a952e81e7e
dir: /appl/math/powers.b/
implement Powers; include "sys.m"; sys: Sys; include "draw.m"; include "arg.m"; include "lock.m"; lockm: Lock; Semaphore: import lockm; Powers: module { init: fn(nil: ref Draw->Context, nil: list of string); }; MAXNODES: con (1<<20)/4; verbose: int; # Doing # powers -p 3 # gives # [2] 1729 = 1**3 + 12**3 = 9**3 + 10**3 # [2] 4104 = 2**3 + 16**3 = 9**3 + 15**3 # ie 1729 can be written in two ways as the sum of 2 cubes as can 4104. # The options are # -p the power to use - default 2 # -n the number of powers summed - default 2 # -f the minimum number of ways found before reporting it - default 2 # -l the least number to consider - default 0 # -m the greatest number to consider - default 8192 # Thus # pow -p 4 -n 3 -f 3 -l 0 -m 1000000 # gives # [3] 811538 = 12**4 + 17**4 + 29**4 = 7**4 + 21**4 + 28**4 = 4**4 + 23**4 + 27**4 # ie fourth powers, 3 in each sum, minimum of 3 representations, numbers from 0-1000000. # [2] 25 # [3] 325 # [4] 1105 # [5] 4225 # [6] 5525 # [7] 203125 # [8] 27625 # [9] 71825 # [10] 138125 # [11] 2640625 # [12] 160225 # [13] 17850625 # [14] 1221025 # [15] 1795625 # [16] 801125 # [18] 2082925 # [20] 4005625 # [23] 30525625 # [24] 5928325 # [32] 29641625 # [24] 5928325 = 63**2 + 2434**2 = 94**2 + 2433**2 = 207**2 + 2426**2 = 294**2 + 2417**2 = 310**2 + 2415**2 = 465**2 + 2390**2 = 490**2 + 2385**2 = 591**2 + 2362**2 = 690**2 + 2335**2 = 742**2 + 2319**2 = 849**2 + 2282**2 = 878**2 + 2271**2 = 959**2 + 2238**2 = 1039**2 + 2202**2 = 1062**2 + 2191**2 = 1201**2 + 2118**2 = 1215**2 + 2110**2 = 1290**2 + 2065**2 = 1410**2 + 1985**2 = 1454**2 + 1953**2 = 1535**2 + 1890**2 = 1614**2 + 1823**2 = 1633**2 + 1806**2 = 1697**2 + 1746**2 # [32] 29641625 = 67**2 + 5444**2 = 124**2 + 5443**2 = 284**2 + 5437**2 = 320**2 + 5435**2 = 515**2 + 5420**2 = 584**2 + 5413**2 = 835**2 + 5380**2 = 955**2 + 5360**2 = 1180**2 + 5315**2 = 1405**2 + 5260**2 = 1460**2 + 5245**2 = 1648**2 + 5189**2 = 1795**2 + 5140**2 = 1829**2 + 5128**2 = 1979**2 + 5072**2 = 2012**2 + 5059**2 = 2032**2 + 5051**2 = 2245**2 + 4960**2 = 2308**2 + 4931**2 = 2452**2 + 4861**2 = 2560**2 + 4805**2 = 2621**2 + 4772**2 = 2840**2 + 4645**2 = 3005**2 + 4540**2 = 3035**2 + 4520**2 = 3320**2 + 4315**2 = 3365**2 + 4280**2 = 3517**2 + 4156**2 = 3544**2 + 4133**2 = 3664**2 + 4027**2 = 3715**2 + 3980**2 = 3803**2 + 3896**2 # [2] 1729 = 1**3 + 12**3 = 9**3 + 10**3 # [2] 4104 = 2**3 + 16**3 = 9**3 + 15**3 # [3] 87539319 = 167**3 + 436**3 = 228**3 + 423**3 = 255**3 + 414**3 # [2] 635318657 = 59**4 + 158**4 = 133**4 + 134**4 # [2] 3262811042 = 7**4 + 239**4 = 157**4 + 227**4 # [2] 8657437697 = 193**4 + 292**4 = 256**4 + 257**4 # [2] 68899596497 = 271**4 + 502**4 = 298**4 + 497**4 # [2] 86409838577 = 103**4 + 542**4 = 359**4 + 514**4 # [2] 160961094577 = 222**4 + 631**4 = 503**4 + 558**4 # [2] 2094447251857 = 76**4 + 1203**4 = 653**4 + 1176**4 # [2] 4231525221377 = 878**4 + 1381**4 = 997**4 + 1342**4 # [2] 26033514998417 = 1324**4 + 2189**4 = 1784**4 + 1997**4 # [2] 37860330087137 = 1042**4 + 2461**4 = 2026**4 + 2141**4 # [2] 61206381799697 = 248**4 + 2797**4 = 2131**4 + 2524**4 # [2] 76773963505537 = 1034**4 + 2949**4 = 1797**4 + 2854**4 # [2] 109737827061041 = 1577**4 + 3190**4 = 2345**4 + 2986**4 # [2] 155974778565937 = 1623**4 + 3494**4 = 2338**4 + 3351**4 # [2] 156700232476402 = 661**4 + 3537**4 = 2767**4 + 3147**4 # [2] 621194785437217 = 2694**4 + 4883**4 = 3966**4 + 4397**4 # [2] 652057426144337 = 604**4 + 5053**4 = 1283**4 + 5048**4 # [2] 680914892583617 = 3364**4 + 4849**4 = 4288**4 + 4303**4 # [2] 1438141494155441 = 2027**4 + 6140**4 = 4840**4 + 5461**4 # [2] 1919423464573697 = 274**4 + 6619**4 = 5093**4 + 5942**4 # [2] 2089568089060657 = 498**4 + 6761**4 = 5222**4 + 6057**4 # [2] 2105144161376801 = 2707**4 + 6730**4 = 3070**4 + 6701**4 # [2] 3263864585622562 = 1259**4 + 7557**4 = 4661**4 + 7269**4 # [2] 4063780581008977 = 5181**4 + 7604**4 = 6336**4 + 7037**4 # [2] 6315669699408737 = 1657**4 + 8912**4 = 7432**4 + 7559**4 # [2] 6884827518602786 = 635**4 + 9109**4 = 3391**4 + 9065**4 # [2] 7191538859126257 = 4903**4 + 9018**4 = 6842**4 + 8409**4 # [2] 7331928977565937 = 1104**4 + 9253**4 = 5403**4 + 8972**4 # [2] 7362748995747617 = 5098**4 + 9043**4 = 6742**4 + 8531**4 # [2] 7446891977980337 = 1142**4 + 9289**4 = 4946**4 + 9097**4 # [2] 7532132844821777 = 173**4 + 9316**4 = 4408**4 + 9197**4 # [2] 7985644522300177 = 6262**4 + 8961**4 = 7234**4 + 8511**4 # 5, 6, 7, 8, 9, 10, 11 none Btree: adt{ sum: big; left: cyclic ref Btree; right: cyclic ref Btree; }; Dtree: adt{ sum: big; freq: int; lst: list of array of int; left: cyclic ref Dtree; right: cyclic ref Dtree; }; nCr(n: int, r: int): int { if(r > n-r) r = n-r; # f := g := 1; # for(i := 0; i < r; i++){ # f *= n-i; # g *= i+1; # } # return f/g; num := array[r] of int; den := array[r] of int; for(i := 0; i < r; i++){ num[i] = n-i; den[i] = i+1; } for(i = 0; i < r; i++){ for(j := 0; den[i] != 1; j++){ if(num[j] == 1) continue; k := hcf(num[j], den[i]); if(k != 1){ num[j] /= k; den[i] /= k; } } } f := 1; for(i = 0; i < r; i++) f *= num[i]; return f; } nHr(n: int, r: int): int { if(n == 0) return 0; return nCr(n+r-1, r); } nSr(n: int, i: int, j: int): int { return nHr(j, n)-nHr(i, n); # s := 0; # for(k := i; k < j; k++) # s += nHr(k+1, n-1); # return s; } nSrmax(n: int, i: int, m: int): int { s := 0; for(k := i; ; k++){ s += nHr(k+1, n-1); if(s > m) break; } if(k == i) return i+1; return k; } kth(c: array of int, n: int, i: int, j: int, k: int) { l, u: int; m := nSr(n, i, j); if(k < 0) k = 0; if(k >= m) k = m-1; p := 0; for(q := 0; q < n; q++){ if(q == 0){ l = i; u = j-1; } else{ l = 0; u = c[q-1]; } for(x := l; x <= u; x++){ m = nHr(x+1, n-q-1); p += m; if(p > k){ p -= m; break; } } c[q] = x; } } pos(c: array of int, n: int): int { p := 0; for(q := 0; q < n; q++) p += nSr(n-q, 0, c[q]); return p; } min(c: array of int, n: int, p: int): big { s := big(0); for(i := 0; i < n; i++) s += big(c[i])**p; m := s; for(i = n-1; i > 0; i--){ s -= big(c[i])**p; s -= big(c[i-1])**p; c[i]--; c[i-1]++; s += big(c[i-1])**p; if(s < m) m = s; } c[0]--; c[n-1]++; # m--; return m; } hcf(a, b: int): int { if(b == 0) return a; for(;;){ if(a == 0) break; if(a < b) (a, b) = (b, a); a %= b; # a -= (a/b)*b; } return b; } gcd(l: list of array of int): int { g := (hd l)[0]; for(; l != nil; l = tl l){ d := hd l; n := len d; for(i := 0; i < n; i++) g = hcf(d[i], g); } return g; } adddup(s: big, root: ref Dtree): int { n, p, lp: ref Dtree; p = root; while(p != nil){ if(s == p.sum) return ++p.freq; lp = p; if(s < p.sum) p = p.left; else p = p.right; } n = ref Dtree(s, 2, nil, nil, nil); if(s < lp.sum) lp.left = n; else lp.right = n; return n.freq; } cp(c: array of int): array of int { n := len c; m := 0; for(i := 0; i < n; i++) if(c[i] != 0) m++; nc := array[m] of int; nc[0: ] = c[0: m]; return nc; } finddup(s: big, c: array of int, root: ref Dtree, f: int) { p: ref Dtree; p = root; while(p != nil){ if(s == p.sum){ if(p.freq >= f) p.lst = cp(c) :: p.lst; return; } if(s < p.sum) p = p.left; else p = p.right; } } printdup(p: ref Dtree, pow: int, ix: int) { if(p == nil) return; printdup(p.left, pow, ix); if((l := p.lst) != nil){ if(gcd(l) == 1){ min1 := min2 := 16r7fffffff; for(; l != nil; l = tl l){ n := len hd l; if(n < min1){ min2 = min1; min1 = n; } else if(n < min2) min2 = n; } i := min1+min2-pow; if(i <= ix){ sys->print("[%d, %d] %bd", i, p.freq, p.sum); for(l = p.lst; l != nil; l = tl l){ d := hd l; n := len d; sys->print(" = "); for(j := n-1; j >= 0; j--){ sys->print("%d**%d", d[j], pow); if(j > 0) sys->print(" + "); } } sys->print("\n"); if(i < 0){ sys->print("****************\n"); exit; } } } } printdup(p.right, pow, ix); } addsum(s: big, root: ref Btree, root1: ref Dtree): int { n, p, lp: ref Btree; p = root; while(p != nil){ if(s == p.sum) return adddup(s, root1); lp = p; if(s < p.sum) p = p.left; else p = p.right; } n = ref Btree(s, nil, nil); if(s < lp.sum) lp.left = n; else lp.right = n; return 1; } oiroot(x: big, p: int): int { for(i := 0; ; i++){ n := big(i)**p; if(n > x) break; } return i-1; } iroot(x: big, p: int): int { m: big; if(x == big(0) || x == big(1)) return int x; v := x; n := 0; for(i := 32; i > 0; i >>= 1){ m = ((big(1)<<i)-big(1))<<i; if((v&m) != big(0)){ n += i; v >>= i; } } a := big(1) << (n/p); b := a<<1; while(a < b){ m = (a+b+big(1))/big(2); y := m**p; if(y > x) b = m-big(1); else if(y < x) a = m; else a = b = m; } if(a**p <= x && (a+big(1))**p > x) ; else{ sys->print("fatal: %bd %d -> %bd\n", x, p, a); exit; } return int a; } initval(c: array of int, n: int, p: int, v: int): big { for(i := 0; i < n; i++) c[i] = 0; c[0] = v; return big(v)**p; } nxtval(c: array of int, n: int, p: int, s: big): big { for(k := n-1; k >= 0; k--){ s -= big(c[k])**p; c[k]++; if(k == 0){ s += big(c[k])**p; break; } else{ if(c[k] <= c[k-1]){ s += big(c[k])**p; break; } c[k] = 0; } } return s; } powers(p: int, n: int, f: int, ix: int, lim0: big, lim: big, ch: chan of int, lock: ref Semaphore) { root := ref Btree(big(-1), nil, nil); root1 := ref Dtree(big(-1), 0, nil, nil, nil); min := max := lim0; c := array[n] of int; for(;;){ imin := iroot((min+big(n-1))/big(n), p); imax := nSrmax(n, imin, MAXNODES); max = big(imax)**p - big(1); while(max <= min){ # could do better imax++; max = big(imax)**p - big(1); } if(max > lim){ max = lim; imax = iroot(max, p)+1; } if(verbose) sys->print("searching in %d-%d(%bd-%bd)\n", imin, imax, min, max); m := mm := 0; maxf := 0; s := initval(c, n, p, imin); for(;;){ mm++; if(s >= min && s < max){ fr := addsum(s, root, root1); if(fr > maxf) maxf = fr; m++; } s = nxtval(c, n, p, s); if(c[0] == imax) break; } root.left = root.right = nil; if(maxf >= f){ if(verbose) sys->print("finding duplicates\n"); s = initval(c, n, p, imin); for(;;){ if(s >= min && s < max) finddup(s, c, root1, f); s = nxtval(c, n, p, s); if(c[0] == imax) break; } if(lock != nil) lock.obtain(); printdup(root1, p, ix); if(lock != nil) lock.release(); root1.left = root1.right = nil; } if(verbose) sys->print("%d(%d) nodes searched\n", m, mm); if(mm != nSr(n, imin, imax)){ sys->print("**fatal**\n"); exit; } min = max; if(min >= lim) break; } if(ch != nil) ch <-= 0; } usage() { sys->print("usage: powers -p power -n number -f frequency -i index -l minimum -m maximum -s procs -v\n"); exit; } partition(p: int, n: int, l: big, m: big, s: int): array of big { a := array[s+1] of big; a[0] = big(iroot(l, p))**n; a[s] = (big(iroot(m, p))+big(1))**n; nn := a[s]-a[0]; q := nn/big(s); r := nn-q*big(s); t := big(0); lb := a[0]; for(i := 0; i < s; i++){ ub := lb+q; t += r; if(t >= big(s)){ ub++; t -= big(s); } a[i+1] = ub; lb = ub; } if(a[s] != a[0]+nn){ sys->print("fatal: a[s]\n"); exit; } for(i = 0; i < s; i++){ # sys->print("%bd %bd\n", a[i], a[i]**p); a[i] = big(iroot(a[i], n))**p; } a[0] = l; a[s] = m; while(a[0] >= a[1]){ a[1] = a[0]; a = a[1: ]; --s; } while(a[s] <= a[s-1]){ a[s-1] = a[s]; a = a[0: s]; --s; } return a; } init(nil: ref Draw->Context, args: list of string) { sys = load Sys Sys->PATH; arg := load Arg Arg->PATH; lockm = load Lock Lock->PATH; lockm->init(); lock := Semaphore.new(); p := n := f := 2; ix := 1<<30; l := m := big(0); s := 1; arg->init(args); while((c := arg->opt()) != 0){ case c { 'p' => p = int arg->arg(); 'n' => n = int arg->arg(); 'f' => f = int arg->arg(); 'i' => ix = int arg->arg(); 'l' => l = big(arg->arg()); 'm' => m = big(arg->arg())+big(1); 's' => s = int arg->arg(); 'v' => verbose = 1; * => usage(); } } if(arg->argv() != nil) usage(); if(p < 2){ p = 2; sys->print("setting p = %d\n", p); } if(n < 2){ n = 2; sys->print("setting n = %d\n", n); } if(f < 2){ f = 2; sys->print("setting f = %d\n", f); } if(l < big(0)){ l = big(0); sys->print("setting l = %bd\n", l); } if(m <= big(0)){ m = big((1<<13)+1); sys->print("setting m = %bd\n", m-big(1)); } if(l >= m) exit; if(s <= 1) powers(p, n, f, ix, l, m, nil, nil); else{ nproc := 0; ch := chan of int; a := partition(p, n, l, m, s); lb := a[0]; for(i := 0; i < s; i++){ ub := a[i+1]; if(lb < ub){ nproc++; spawn powers(p, n, f, ix, lb, ub, ch, lock); } lb = ub; } for( ; nproc != 0; nproc--) <- ch; } }